TRABALHANDO GEOMETRIA NA 5ª SÉRIE
1. Triângulo Equilátero: é um polígono com três lados iguais.
Vamos à construção! Lembre-se que o triângulo construído deve ser estável, ou seja, ao movimentarmos seus vértices, o triângulo continuará sendo equilátero.
- Construa um segmento de reta (Menu 3/Item 2)e chame seus pontos extremos de A e B (Menu 10/Item 1).
- Construa uma circunferência com centro no ponto A e raio AB (Menu 4/Item 1).
- Sobre a circunferência construída, marque um ponto (Menu 2/Item 2) e chame-o de P (Menu 10/Item 1).
- Construa um segmento com extremos nos pontos A e P (Menu 3/Item 2).
| <><><>>> >Meça os segmentos AB e AP (Menu 9/Item 1).
O que você descobriu?
Movimente o ponto P e tente descobrir qual a posição que ele
deve estar para que quando ligarmos os B e P o triângulo
ABP seja equilátero. | <><><>>>>
- Construa agora uma circunferência com centro no ponto B e raio BA (Menu 4/Item 1). Sobre ela, marque um ponto
| <><><>>> >Movimente os pontos P e Q e descubra onde
devemos colocar o terceiro vértice do triângulo. | <><><>>>>
- O terceiro vértice do triângulo deve ser colocado na intersecção das duas circunferências. Podemos, então, "apagar" os pontos C e D e "esconder" (Menu 11/Item 1) as circunferências.
Experimente movimentar os pontos A e B e veja o que acontece. O triângulo ABC muda de tamanho, muda de posição mas permanece equilátero.
Observe que o ponto C não pode ser movido. Por que?
2. Triângulo Isósceles: é um triângulo dois lados iguais.
Vamos à construção! Lembre-se que o triângulo deve ser estável sob a ação do movimento.
- Construa um segmento de reta (Menu 3/Item 2) e chame seus pontos extremos de A e B (Menu 10/Item 1).
- Marque o ponto médio desse segmento (Menu 5/Item 3) e chame-o de M (Menu 10/Item 1).
- Trace a reta perpendicular ao segmento AB que passa pelo ponto M (Menu 5/Item 1).
- Marque um ponto sobre a reta perpendicular que você construiu (Menu 2/Item 2) e chame-o de C (Menu 10/Item 1).
- Trace os segmentos AC e BC (Menu 3/Item 2). Você acabou de construir um triângulo isósceles. Pode "esconder" a reta perpendicular e o ponto M (Menu 11/Item 1).
Movimente os pontos A, B e C e veja o que acontece. Mudamos o tamanho e a forma do triângulo mas ele continua sendo isósceles.
3. Quadrado: é um polígono com quatro lados e quatro ângulos retos.
Siga os passos indicados no desenho para construir seu quadrado.
DESAFIO: Construa um quadrado a partir de sua diagonal.
Resposta
4. Retângulo: é um polígono de quatro lados, com quatro ângulos retos.Siga os passos indicados no desenho para construir seu retângulo.
DESAFIO: Com as construções já feitas podemos planificar os poliedros tetredro, octaedro e cubo. Experimente!
ATIVIDADE II
Construa os polígonos abaixo da maneira que achar mais fácil.
Lembrando que:
PARALELOGRAMO é um polígono com quatro lados, sendo que seus lados opostos são paralelos dois a dois.
LOSANGO é um polígono com quatro lados iguais.
ATIVIDADE III
Vamos agora construir os macros dos polígonos que aprendemos nas Atividades I e II. Para tanto, basta acompanhar os passos indicados abaixo.
Se você ainda não sabe fazer macros, clique aqui para uma primeira explicação detalhada. 1. Macro para Triângulo Equilátero
Conforme a construção feita na Atividade I, definimos:
- Objeto Inicial: lado do triângulo (segmento AB).
- Objeto Final: Triângulo (polígono).
2. Macro para Triângulo Isósceles
Conforme a construção feita na Atividade I, definimos:
- Objeto Inicial: base do triângulo (segmento AB).
- Objeto Final: Triângulo (polígono).
Observe que neste macro não temos controle sobre a altura relativa ao lado base. Para controlar a altura, considere a seguinte construção:
- Objeto Inicial: pontos A, B e P (nesta ordem).
- Objeto Final: Triângulo Isósceles (polígono).
O triângulo construído terá base AB e altura AP.
3. Macro para Quadrado
Conforme a construção feita na Atividade I, definimos:
- Objeto Inicial: lado do quadrado (segmento AB).
- Objeto Final: Quadrado (polígono).
4. Macro para Retângulo
Para termos controle sobre o tamanho dos dois lados do retângulo, vamos fazer o macro a partir da construção abaixo:
- Objeto Inicial: três pontos (pontos A, B e P).
- Objeto Final: Retângulo (polígono).
OBS.: O retângulo terá lados de medida AB e AP.
5. Construindo Macro para Paralelogramo
Para a construção que fizemos na Atividade II, temos:
- Objeto Inicial: três pontos (pontos A, B e C).
- Objeto Final: Paralelogramo (polígono).
6. Construindo Macro para Losango
Para a construção que fizemos na Atividade II, temos:
- Objeto Inicial: uma diagonal (segmento AC).
- Objeto Final: Losango (polígono)
Observe que não temos controle sobre o tamanho da outra diagonal. Na construção abaixo, podemos controlar o tamanho das duas diagonais.
- Objeto Inicial: pontos A, B e P (nesta ordem).
- Objeto Final: Losango (polígono).
As diagonais terão tamanhos AB e MP.
ATIVIDADE IV
Nesta atividade, vamos exercitar um pouco de nossa visão espacial, ou seja, a partir de uma figura espacial, desenharemos suas vista frontal (o que enxergamos quando a olhamos de frente), lateral (o que enxergamos quando a olhamos de lado) e superior (o que enxergamos quando a olhamos de cima). Abaixo temos um exemplo de uma figura sólida e as três visões mencionadas:
DESAFIO:Construa as vistas frontal, lateral e superior das figuras espaciais abaixo. Utilize a grade quadriculada do CABRI: vá ao Menu 11/Item 7 (Show Axes) para mostrar o sistema de eixos coordenados e em seguida vá ao Menu 11/Item 9 (Define Grid) para que apareça a grade quadriculada.
Agora que você já sabe construir diversas formas geométricas vamos construir mosaicos com estas formas. A utilização de macros facilitará nosso trabalho.
Abaixo, temos alguns exemplos de mosaicos, utilizando algumas das figuras que vimos.
| <><><>>> >
| <><><>>>>
| <><><>>> >
| <><><>>>>
Procure criar seus próprios mosaicos, utilizando as formas geométricas já aprendidas.